Download e-book for iPad: Advances in the Atomic-Scale Modeling of Nanosystems and by G. Manfredi, P.-A. Hervieux, Y. Yin (auth.), Carlo

By G. Manfredi, P.-A. Hervieux, Y. Yin (auth.), Carlo Massobrio, Hervé Bulou, Christine Goyhenex (eds.)

ISBN-10: 3642046495

ISBN-13: 9783642046490

ISBN-10: 3642046509

ISBN-13: 9783642046506

The ebook covers various purposes of contemporary atomic-scale modeling of fabrics within the zone of nanoscience and nanostructured platforms. by way of highlighting the latest achievements acquired inside of a unmarried institute, on the vanguard of fabric technological know-how experiences, the authors may be able to supply an intensive description of houses on the nanoscale. The components lined are structural selection, digital excitation behaviors, clusters on floor morphology, spintronics and disordered fabrics. for every program, the fundamentals of technique are supplied, taking into account a valid presentation of methods equivalent to density sensible concept (of flooring and excited states), digital delivery and molecular dynamics in its classical and first-principles varieties. The ebook is a well timed number of theoretical nanoscience contributions totally based on present experimental advances.

Show description

Read Online or Download Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials PDF

Best physics books

Statistical Physics: Part 1 (3rd Edition) (Course of by L. D. Landau, E. M. Lifshitz PDF

Put up 12 months observe: First released 1980 by way of Butterworth-Heinemann
-------------------------

A lucid presentation of statistical physics and thermodynamics which develops from the final ideas to offer a number of purposes of the speculation.

Elements de Mécanique quantique - Tome 1 by E. Kartheuser PDF

I Les origines de los angeles Th´eorie quantique
I. 1. Les innovations de los angeles body classique
(I. 1. 1) constitution corpusculaire de l. a. mati`ere
(I. 1. 2) Nature ondulatoire de los angeles lumi`ere
(I. 1. three) Le d´eterminisme de los angeles body classique
I. 2. Ondes ´electromagn´etiques et quanta de lumi`ere
I. three. los angeles nature ondulatoire de l. a. mati`ere
(I. three. 1) Les spectres de raies et les ondes de Louis de Broglie
(I. three. 2) Description quantique d’une particule libre : le paquet d’ondes
I. four. Dualit´e onde-corpuscule de l. a. lumi`ere et de l. a. mati`ere
I. five. Exercices sur les bases exp´erimentales de l. a. m´ecanique quantique
II Syst`emes quantiques simples
II. 1. Etat quantique d’une particule libre
(II. 1. 1) Fonction d’onde
(II. 1. 2) Courant de probabilit´e
(II. 1. three) Valeur moyenne et ´ecart quadratique moyen
(II. 1. four) Op´erateur “impulsion” dans l’espace des coordonn´ees
II. 2. Particule dans un potentiel ind´ependant du temps
(II. 2. 1) recommendations stationnaires
(II. 2. 2) Quantification de l’´energie
II. three. l. a. barri`ere de potentiel finie : l’effet tunnel
II. four. Le puits quantique
II. five. L’oscillateur harmonique
(II. five. 1) M´ethode de r´esolution polynˆomiale
(II. five. 2) M´ethode des op´erateurs de cr´eation et de destruction
II. 6. Appendice : Fonction g´en´eratrice des polynˆomes d’Hermite et oscillateur harmonique
(II. 6. 1) Orthonormalit´e des fonctions 'n(x) de l’oscillateur harmonique
(II. 6. 2) Valeurs moyennes et probabilit´e de transition
III Fondements de l. a. th´eorie quantique
III. 1. Equation de Schr¨odinger et ses propri´et´es
(III. 1. 1) Spectre de l’op´erateur hamiltonien et element de vue du calcul vectoriel
(III. 1. 2) Le vecteur d’´etat de l’espace d’Hilbert E et ses propri´et´es
(III. 1. three) Repr´esentation des coordonn´ees |ri
(III. 1. four) Repr´esentation des impulsions |pi
(III. 1. five) formula matricielle : Repr´esentation des ´etats d’´energie
(III. 1. 6) D´eg´en´erescence d’un niveau d’´energie
III. 2. constitution de l’espace de Hilbert "H et produits tensoriels d’espaces
III. three. Le processus de mesure et sa description quantique
(III. three. 1) Commutateurs et grandeurs physiques simultan´ement mesurables
(III. three. 2) Grandeurs physiques non simultan´ement mesurables : G´en´eralisation des family members d’incertitude
de Heisenberg
III. four. L’´equation d’´evolution
III. five. Les diff´erents sch´emas en m´ecanique quantique
(III. five. 1) Le sch´ema de Schr¨odinger
(III. five. 2) Le sch´ema de Heisenberg
(III. five. three) Le sch´ema d’interaction
III. 6. L’op´erateur de densit´e
III. 7. Int´egrale premi`ere et sym´etrie
(III. 7. 1) Observables compatibles et constantes du mouvement
(III. 7. 2) Sym´etrie et constante du mouvement
(III. 7. three) G´en´erateur d’une transformation de sym´etrie
(III. 7. four) Sym´etrie de translation
III. eight. Sym´etrie par rapport aux diversifications de particules identiques, les “bosons” et les “fermions”
III. nine. M´ethodes d’approximation pour los angeles r´esolution de l’´equation de Schr¨odinger
(III. nine. 1) Th´eorie de perturbation
(III. nine. 2) M´ethode variationnelle lin´eaire
III. 10. Conclusions : Postulats de l. a. body quantique
III. eleven. Appendice : Le cadre math´ematique de l’espace de Hilbert "H
IV Les moments angulaires en th´eorie quantique
IV. 1. Fonctions propres et valeurs propres du second cin´etique orbital : M´ethode polynˆomiale
IV. 2. Sym´etrie de rotation et second angulaire
IV. three. M´ethode alg´ebrique : Les op´erateurs d’´echelle
IV. four. Repr´esentation matricielle des op´erateurs du second angulaire
IV. five. Le spin d’une particule
(IV. five. 1) Le second magn´etique de l’´electron
(IV. five. 2) Exp´erience de Stern et Gerlach
(IV. five. three) Vecteur d’´etat et op´erateur de spin
(IV. five. four) Pr´ecession du spin dans un champ magn´etique
(IV. five. five) Composition de deux moments angulaires
IV. 6. Appendice : Fonctions sp´eciales associ´ees au second angulaire
(IV. 6. 1) Polynˆomes de Legendre
(IV. 6. 2) Les harmoniques sph´eriques
V Particules dans un champ de strength central
V. 1. Le probl`eme de deux particules en th´eorie quantique
(V. 1. 1) Potentiel `a sym´etrie sph´erique
(V. 1. 2) Vibrations et rotations d’une mol´ecule
V. 2. L’atome hydrog´eno¨ıde
(V. 2. 1) Fonction d’onde totale et ses propri´et´es
V. three. constitution advantageous des atomes alcalins
(V. three. 1) Interactions spin-orbite
(V. three. 2) Corrections relativistes
V. four. Effet de Zeeman des atomes alcalins
(V. four. 1) Atome plac´e dans un champ magn´etique quelconque
(V. four. 2) Effet Zeeman anomal
(V. four. three) Effet Paschen-Back
V. five. Etats quantiques de los angeles mol´ecule diatomique
V. 6. Appendice : Propri´et´es des fonctions sp´eciales de l’atome hydrog´eno¨ıde
(V. 6. 1) Les polynˆomes de Laguerre associ´es
VI Transitions entre ´etats stationnaires
VI. 1. Mouvement d’une particule charg´ee soumise `a un champ ´electromagn´etique
(VI. 1. 1) Le hamiltonien du syst`eme
(VI. 1. 2) motion d’un champ magn´etique constant
(VI. 1. three) Invariance de jauge
VI. 2. Perturbations non stationnaires
(VI. 2. 1) R`egle d’or de Fermi
VI. three. Le rayonnement dipolaire
VI. four. Corrections multipolaires
VI. five. Expression quantique des coefficients d’Einstein
VI. 6. Coefficients d’absorption
VI. 7. R`egles de s´election et le spectre optique d’atome `a un ´electron
(VI. 7. 1) Les r`egles de s´election d’un oscillateur harmonique et d’un atome hydrog´eno¨ıde r´ealiste
VII advent `a l. a. th´eorie quantique non-relativiste des syst`emes
de particules identiques
VII. 1. Le formalisme g´en´eral
VII. 2. program `a l’atome d’h´elium
(VII. 2. 1) interplay d’´echange et magn´etisme
VII. three. L’approximation du champ self-consistant de Hartree et de Hartree-Fock
VIII creation `a l. a. th´eorie quantique de l. a. diffusion par un
potentiel
VIII. 1. part efficace de diffusion
(VIII. 1. 1) part efficace diff´erentielle dans le syst`eme du laboratoire
(VIII. 1. 2) Interpr´etation classique et loi de Rutherford
VIII. 2. Traitement stationnaire
(VIII. 2. 1) Equation int´egrale de los angeles diffusion et answer “approch´ee” : “Approximation de Born”
(VIII. 2. 2) Le r`egle d’Or de Fermi et l’approximation de Born
(VIII. 2. three) M´ethode des ondes partielles
Livres de r´ef´erence
– J. L. Basdevant, M´ecanique quantique, ellipses, 1986.
– J. Hladik, M´ecanique quantique, ´editions Masson, Paris, 1997.
Bibliographie
– D. Blokintsev, Principes de m´ecanique quantique, ´editions Mir, Moscou, 1981.
– J. M. L´evy-Leblond, F. Balibar, Quantique. Rudiments, Inter-Editions, Paris, 1984.
– Cl. Cohen-Tannoudji, B. Diu, F. Lalo¨e, M´ecanique quantique, tomes I & II, Hermann, 1980.
– E. Merzbacher, Quantum Mechanics, John Wiley, third ed. , 1998.
– S. Gasiorowicz, Quantum Physics, John Wiley, 1997.
– L. D. Landau, E. M. Lifshitz, Quantum Mechanics, Pergamon Press, third ed. , 1981.
– V. ok. Thankappan, Quantum Mechanics, John Wiley, 2d ed. , 1993.
– A. B. Wolbarst, Symmetry and Quantum Mechanics, Van Nostrand Reinhold Comp. , 1977.
– W. Louisell, Radiation and noise in Quantum Electronics, McGraw-Hill, 1964.
– A. Z. Capri, Nonrelativistic Quantum Mechanics, Benjamin/Cummings, 1985.
– J. J. Sakurai, glossy Quantum Mechanics, Benjamin/Cummings, 1985.
– W. Greiner, B. M¨uller, Quantum Mechanics, vol. I & II, Hermann, 1980.
– T. Fliessbach, Quantenmechanik, Spektrum Akademischer Verlag, 1995.
– R. W. Robinett, Quantum Mechanics, Oxford college Press, 1997.

Extra info for Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Sample text

It is worth mentioning that M is generally temperature dependent [100]. 2 Nonlinear Response: Phase-Space Methods In order to investigate the nonlinear regime of the charge and spin dynamics, a phase-space approach is particularly interesting. In this paragraph, we will construct a Wigner equation that includes spin effects in the local-density approximation and show that its classical limit takes the form of a Vlasov equation. The starting point for the derivation is the time-dependent Kohn-Sham (KS) equations described in Sect.

Some recent results have been obtained using a generalization of TDDFT that relies on the electron current as well as the electron density [48]. The phase-space approach, via the Wigner formulation, also appears promising to model effects beyond the mean-field, as we have illustrated in Sect. 3. Another important issue, which was not mentioned earlier in this review, is the inclusion of relativistic corrections in the above models for the electron dynamics. Spin–orbit coupling (which is an effect appearing at second order in v/c) is sometimes taken into account in a semi-phenomenological way within the Pauli equation.

From Eq. (40), one can recover the Vlasov–Poisson dispersion relation by taking the classical limit → 0 εVP (ω, k) = 1 + ω2p ∂ f 0 /∂v dv. ω − kv n0k (42) The equivalence of the Hartree and Wigner–Poisson methods can be easily proven by comparing the linear results. For the Hartree equations (32), we linearize around a homogeneous equilibrium given by plane waves: ψα = √ mu 0α x , n 0 exp i each with occupation number pα and energy constant is found to be Norb εH (ω, k) = 1 − pα α=1 α (43) = mu 20α /2.

Download PDF sample

Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials by G. Manfredi, P.-A. Hervieux, Y. Yin (auth.), Carlo Massobrio, Hervé Bulou, Christine Goyhenex (eds.)


by Jason
4.0

Rated 4.25 of 5 – based on 8 votes